3(4x)^2+48=49200

Simple and best practice solution for 3(4x)^2+48=49200 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(4x)^2+48=49200 equation:



3(4x)^2+48=49200
We move all terms to the left:
3(4x)^2+48-(49200)=0
We add all the numbers together, and all the variables
34x^2-49152=0
a = 34; b = 0; c = -49152;
Δ = b2-4ac
Δ = 02-4·34·(-49152)
Δ = 6684672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6684672}=\sqrt{65536*102}=\sqrt{65536}*\sqrt{102}=256\sqrt{102}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-256\sqrt{102}}{2*34}=\frac{0-256\sqrt{102}}{68} =-\frac{256\sqrt{102}}{68} =-\frac{64\sqrt{102}}{17} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+256\sqrt{102}}{2*34}=\frac{0+256\sqrt{102}}{68} =\frac{256\sqrt{102}}{68} =\frac{64\sqrt{102}}{17} $

See similar equations:

| (3x-1)+2(2x+2)=180 | | (2400/x)*25=(x/2)*0.2 | | 16^7x+2=6 | | (4x+28)+(3x+33)+(3x+33)=180 | | 4.603y—1.842=-3.651y | | (4x+28)+(4x+28)+(3x+33)=180 | | x=x*0.2 | | 1+6n=13+8n | | (3x-1)+2(2x+3)=180 | | 11y-2=2y+34 | | 2x-4=x-6+6 | | 51=x–113 | | (3x−1)+2(2x+3)=180 | | 3x-15+8=6x+3+3x | | 1/6(x+5)=1/2(x+6) | | 6x-58=165 | | 4/20h+4=3/5h+8 | | 10y-7=6y+5 | | 3x-6(2x-17)=174 | | 3p+7=9p-68 | | 6.5+b=-3.9 | | 8x+78=2x+14=180 | | -3(5x-1)+5x+-1=-18 | | 5x+54=165 | | 4(v+3)-6v=-2(v+6) | | -14+v=-51 | | H(×)=x-11 | | 7x-14=40 | | 167x+19x-16=1132 | | 5.63=n+0.87 | | y=6(-2.5)+11 | | 115+8y-15=180 |

Equations solver categories